

The tortuous pathway to commercial-scale CCS

QUPEX 6 June 2023

Ultracrepidarian

noun

Someone who gives opinions on subjects they know nothing about.

Agenda

- Quick CCS fundamentals
 - Capture
 - Transport
 - Storage
- Status of global CCS
- Challenges for Australian commercial-scale CCS
- Update on Glencore's CTSCo Surat Basin CCS project

CO₂ fundamentals

1 Truck transport—liquid state (-20degC, 2.3MPa)

- Captured GHG is predominantly (>98%) CO₂
- CO₂ can exist in several states
 - Captured as a gas
 - Transported via pipeline as a gas or supercritical fluid, or
 - Transported via truck as a cryogenic liquid
 - Injected for storage as a supercritical liquid
- Supercritical CO₂ is a dense fluid
 - Liquid like
 - Very low viscosity
 - Compressible
- CO₂ is miscible in water

$$CO_{2 (aq)} + H_2O \rightarrow H_2CO_{3 (aq)}$$

- Forms carbonic acid in low concentration
- Reduces water pH
- \circ CO₂ in solution occurs naturally in rainfall (with pH 5 5.5)
- Consumed as carbonated water

Increasing hydrostatic pressure Increasing temperature

CO₂ capture

- Industrial or post combustion capture
 - Amine/solvent plants
 - Used to extract CO₂ from a mixed gas stream
 i.e. ~12% CO₂ in the flue gas from a power station
- Direct air capture (DAC)
- Direct CO₂ waste (i.e. from natural gas processing or from blue hydrogen production)

Huaneng Shanghai Shidongkou 120,000tpa PCC plant

CO₂ storage

Geological requirements for CO₂ storage

- Permeable and porous formation (sandstone)
 - Deeper than ~800m (above 800m CO₂ will be a gas)
- Competent sealing formation above and below the storage reservoir
- Non-potable/saline water no sterilising a freshwater resource

CO₂ storage

Trapping mechanism

- Anticline trapping
 - Such as legacy oil/gas fields
- Solution trapping
 - Requires a low-inclination seal
 - CO₂ displaces water around the injection well
 - CO₂ dissolves in the groundwater on the edge of the plume
 - Most large-scale CCS projects rely on solution trapping

Example anticline trap

Status of global CCS

Most CCS activity in USA and Canada

- USA
 - 45Q
 - IRA
 - Mature E&P environment
- Canada
 - Carbon price
 - Mature E&P environment

Source: GCCSI

Status of global CCS

- Actual dedicated geological CO₂ storage (i.e. non-EOR) volumes are small to date
- Majority of current CO₂ injected has been for EOR
 - Where there was an economic incentive

APPENDIX FIGURE 5: CO₂ storage resources (which are associated with storage projects) by country and SRMS maturity class

Source: OGCI et al. (2022)

Status of global CCS

Operating
 Under construction
 Advanced development
 Concept and feasibility

Source: IEA

Key challenges for Australian commercial-scale CCS

- Carbon pricing uncertainty
- Environmental approvals/regulation uncertainty
- Community and government perception of CCS risks
- Community and government perceptions of the need for CCS
- Perceived completion with high-intensity agriculture for groundwater resources
- CO₂ source
 - High cost of capture from existing industrial/generation emitters
- Scale
 - Large-scale is ultimately essential for reducing transport and storage costs
 - Storage hubs offer the opportunity to achieve this scale

Opportunities

- Australia holds substantial geological storage potential
- Costs for onshore Australia storage are potentially some of the lowest globally
- Others are already making significant advances in capture cost reduction

CTSCo project update

The proposed CTSCo project is as demonstration-scale injection of GHG in the southern Surat Basin EPQ10 tenement

- Transportation by truck of up to 330,000 tonnes of GHG stream across 3-years
 - Up to 110,000 tonnes per year
- Injection of the GHG stream into the Precipice Sandstone ~2.3km below surface
- Monitoring of the injected GHG stream
 - Baseline monitoring prior to injection
 - Monitoring during the 3-year trial injection
 - Monitoring for 2-year post injection or until no further plume movement is demonstrated
- Seeking environmental approval to inject CO₂ from the QLD government via an EIS
 - Currently responding to EIS public submissions

- Verify a large-scale CO₂ storage basin that can be used by industry, generators, and potential future blue hydrogen projects
 - Provide regulatory certainty for GHG storage in Queensland
 - Develop a large-scale, long-term, and costeffective CO₂ storage solution that is close to the source
 - Provide foundation storage infrastructure for potential future large-scale storage

CTSCo project update

- Close to transport infrastructure
- Close to existing and future CO₂ sources
- Tenure held 100% by Glencore
 - Currently the only active greenhouse gas exploration tenure in Queensland
 - 3652 km² area
 - ~500 million tonne storage potential
- Test injection project has both a tiny surface footprint and subsurface impact

Closing comments

- CCS is a proven technology with over 30 projects operating globally
- No global examples of leakage of stored CO₂ from existing storage projects
- Level of community and government understanding of Australia's groundwater is low
 - This generates a fear of technologies such as CO₂ storage
 - Perceived competition with agriculture for water resources
- Regulation for CCS in Australia is relatively untested
- Geological CO₂ storage remains a substantial decarbonisation tool
 - For reducing emissions from fossil fuels
 - For storing large-volumes of CO₂ from hard to abate industries
 - For future large-scale DAC
 - Not the only technology but hard to beat for large-scale abatement
- Only by delivering more successful CCS projects will the technology become better accepted
- Nothing is for free

Questions?